Создание цифровой модели рельефа по снимкам с KA ALOS/PRISM с использованием фотограмметрических методов*

В отчете от 21 сентября 2008 г., подготовленном компанией Terranean Mapping Technologies для австралийского правительственного агентства Geoscience Australia (оригинал см. на www.microimages.com/ papers/DEMsandContoursfromALOSPRISM.pdf), приводится подробная оценка фотограмметрических методов создания цифровых моделей рельефа (ЦМР) по космическим снимкам, сделанным съемочной системой PRISM космического аппарата (KA) ALOS.

Фотограмметрические методы использовались для:

- создания ЦМР с шагом 10 м;
- построения горизонталей с сечением 5 м;
- получения ортотрансформированных панхроматических изображений с разрешением 2,5 м.

В качестве полигона был выбран участок площадью 1520 км² в районе города Харден (Harden), штат Новый Южный Уэльс (Австралия) (рис. 1). Исследования проводились с целью определения точности и экономической эффективности применяемых методов.

Особенностью съемочной аппаратуры PRISM является то, что на одной платформе установлены три съемочные камеры, снимающие «в надир», «вперед» и «назад». Шесть снимков, сделанных картографической стереокамерой PRISM (3 снимка «вперед» и 3 – «назад»), были загружены в фотограмметрический программный комплекс SOCET SET (разработка компании BAE Systems), в котором с использованием наземных опорных точек, предоставленных агентством Geoscience Australia, была выполнена геопространственная привязка. Для определения внутренней геометрии снимков в SOCET SET использовались коэффициенты рационального многочлена (RPC), которые поставлялись вместе со снимками.

Наземные опорные точки были тщательно подобраны, но для точной геопространственной привязки снимков и определения параметров внешнего ориентирования их количество было минимально необходи-

Рис. 1.

Границы полигона (розовая линия) и контуры сцен с КА ALOS/PRISM, наложенные на топографическую основу масштаба 1:1 000 000, составленную агентством Geoscience Australia

^{*} Перевод отчета и его подготовка к публикации выполнены А.В. Беленовым и Б.А. Дворкиным (Компания «Совзонд»).

Рис. 2. Снимки с KA ALOS/PRISM, использованные для стереообработки

мым. Результаты фототриангуляции показали, что точность стереомодели с KA ALOS/PRISM составляет около 3,5 м. Протокол о невязках основывается на примере небольшого размера.

Для создания цифровой модели рельефа в стереоскопическом режиме были измерены параметры отдельных высотных точек, линий перегибов и контуров форм рельефа. ЦМР с шагом 10 м была построена путем интерполирования по методу минимальной кривизны. По ЦМР были построены горизонтали с сечением в 5 м.

Точность построения ЦМР оценивалась путем сравнения параметров наземных точек, вычисленных по ЦМР и полученных путем геодезических измерений на местности. Только пять точек попали в исследуемый район, что является недостаточным для детальной оценки точности. Среднеквадратичная погрешность составила 3,5 м. Как показывают результаты, снимки с КА ALOS/PRISM можно использовать для создания ЦМР с точностью 5 м, а значит тем более, они пригодны для построения ЦМР с точностью 10 м. Было установлено, что для создания ЦМР такого уровня точности с охватом одной сцены с КА ALOS/PRISM (1600 км²) потребуется около 400 часов стереообработки. При этом затраты составят около 10-20 дол. за 1 км², что намного меньше, чем при использовании других методов. Для создания ЦМР с точностью 10 м потребуется меньше половины этих затрат. Экономическая эффективность использования снимков с КА ALOS/PRISM для трехмерного картографирования в крупном масштабе, по сравнению с другими методами, будет наибольшей для небольших территорий, из-за отсутствия необходимости затрат на работы непосредственно на местности.

Данный метод выгодно отличается тем, что объекты, включая гидрографическую сеть, можно картографировать в трехмерном виде. При этом получаются ортотрансформированные изображения высокого качества.

ИСТОРИЯ ВОПРОСА

В Австралии существует большой интерес к соответствующим методам создания ЦМР обширных областей

Фрагмент снимка, выполненного картографической стереокамерой PRISM с KA ALOS с разрешением 2,5 м более высокого разрешения и точности, чем существующие континентальные ЦМР с шагом по широте и долготе 3'' или 9''. Пространственное разрешение снимков с KA ALOS/PRISM в 2,5 м и возможность получения стереопар позволяют создавать ЦМР высокой точности.

Для получения рельефа по стереоснимкам могут использоваться два метода: автокорреляция и фотограмметрическая обработка. Они позволяют рассчитывать параллакс точек, расположенных на левом и правом снимках стереопары. С помощью первого метода можно локализовать точки за счет автоматической корреляции значений пикселей на левом и правом снимках. Его недостатком является то, что объекты, не являющиеся элементами рельефа, например, деревья или здания, не удаляются автоматически, и таким образом, создаваемые модели поверхности не являются истинными моделями рельефа. Метод фотограмметрической обработки представляет собой метод графического построения модели земной поверхности с использованием высотных точек и характерных линий перегиба рельефа в стереорежиме. Этот метод более трудоемкий, поскольку осуществляется оператором, но в то же время более точный. Именно он применялся в данном исследовании для получения точной и высококачественной ЦМР, которую можно построить на базе снимков с KA ALOS/PRISM.

Таблица 1

Наименование параметра	Значение параметра						
Номер сцены (изображения)	ALPSMF 045064235	ALPSMF 045064240	ALPSMF 045064245	ALPSMB 045064350	ALPSMB 045064355	ALPSMB 045064360	
Направление съемки	Вперед			Назад			
Смещение изображения	1			-1			
Вид продукции	01B1F			O1B1B			
Точность орбитальных данных	Precision						
Точность положения в пространстве	OnSitePrecision						
Дата и время в центре сцены	20061129 00:13:31,636	20061129 00:13:35,753	20061129 00:13:39,870	20061129 00:15:04,708	20061129 00:15:08,825	20061129 00:15:12,948	
Широта/долгота центра сцены, 0	-34,415/ 148,287	-34,662/ 148,218	-34,910/ 148,148	-34,449/ 148,261	-34,695/ 148,192	-34,942/ 148,122	
Широта/долгота левого верхнего угла сцены, 0	-34,196/ 148,121	-34,443/ 148,052	-34,690/ 147,982	-34,232/ 148,095	-34,478/ 148,025	-34,725/ 147,956	
Широта/долгота правого верхнего угла сцены, 0	-34,279/ 148,554	-34,526/ 148,486	-34,773/ 148,417	-34,312/ 148,530	-34,558/ 148,461	-34,805/ 148,393	
Широта/долгота левого нижнего угла сцены, 0	-34,551/ 148,021	-34,799/ 147,951	-35,046/ 147,881	-34,587/ -34,833/ 147,995 147,925		-35,079/ 147,855	
Широта/долгота правого нижнего угла сцены, 0	-34,635/ 148,456	-34,882/ 148,387	-35,129/ 148,318	-34,666/ 148,432	-34,912/ 148,363	-35,159/ 148,294	

Параметры изображений

GEOMATICS №4'2009

Пример формуляра с уточненными пространственными координатами наземной опорной точки № 15 по результатам GPS-измерений

№ пункта	015	№ фотографии	GCP_015a/B
Дата	12/02/2008	Время	17:05
Широта, 0	-34,68155417	Долгота, О	148,2718463
Х, м	616509,3077	Үм	6161534,558
Зона	MGA551	Высота	см. GPS_Heights shapefile2
Штат	Новый Южный Уэльс	Топокарта 100К	Cootamundra – 8528
Топограф	R. Coghlan & J.Wilford	Оборудование	Спутниковый приемник Trimble XT с внешней антенной и программным обеспечением ArcPad 7.0
PDOP	2,952124357	Количество наблюдаемых спутников GPS	6
Метод наблюдения	Среднее значение из 180 измерений (180 сек)	Высота антенны, м	1,26

Примечания:

¹ MGA55 – Map Grid of Australia (картографическая сетка Австралии), 55 зона.

GPS_Heights shapefile – значение измеренной высоты приведено в формате ArcPad 7.0 (ESRI).

ДАННЫЕ

Шесть снимков (рис. 2, 3), сделанных картографической стереокамерой PRISM с KA ALOS, были загружены в фотограмметрический программный комплекс SOCET SET.

Для расчета ориентирования снимков с КА ALOS/PRISM использовались коэффициенты рационального многочлена (RPC), которые описывают внутреннюю геометрию снимков и вместе с наземными опорными точками используются для расчета точного ориентирования снимков и их привязки к пространственной системе координат. Были использованы только снимки, выполненные объективами «вперед» и «назад»; у стереопар, включающих снимок отснятый «в надир», меньше параллакс, а значит и меньшая вертикальная точность. Параметры шести изображений, приобретенных у оператора спутника ALOS – компании RESTEC (Remote Sensing Technology Center of Japan), приведены в табл. 1.

Агентство Geoscience Australia отобрало наземные опорные точки и предоставило их для проекта (рис. 4). Для каждой из них были сделаны схемы привязки (рис. 5) и фотография окружающей мест-

ности (рис. 6) с тем, чтобы определить их точное местоположение на снимках (рис. 7). Кроме того, для каждой наземной опорной точки были предоставлены формуляры с их уточненными пространственными координатами по результатам GPS-измерений (табл. 2).

МЕТОДЫ

Снимки, сделанные картографической стереокамерой PRISM со спутника ALOS. были импортированы в фотограмметрический программный комплекс SOCET SET. Затем были предприняты многочисленные попытки определения внутренней геометрии и ориентирования снимков. После консультаций с BAE Systems было установлено, что для определения внутренней геометрии снимков в SOCET SET необходимо иметь значения коэффициентов рационального многочлена (RPC), без которых создание фотограмметрических моделей не представляется возможным. Коэффициенты RPC были получены и затем использованы для создания фотограмметрических моделей в SOCET SET. Был выполнен импорт снимков в SOCET SET, и проведена проверка их качества. Все изображения на снимках оказались на 100% без облаков и имели хорошие радиометрические параметры с небольшой насыщенностью на освещенных участках и отсутствием насыщенности на темных участках.

Таблица 3

Протокол о невязках SOCET SET (пиксели)

Номер опорной точки	Номер сцены (изображения)	Невязка по строкам, пиксель	Невязка по столбцам, пиксель
	ALPSMB045064350-O1B1B	0,059	-0,043
	ALPSMB045064355-O1B1B	0,088	0,005
GCP_01	ALPSMF045064235-O1B1F	-0,023	-0,069
	ALPSMF045064240-O1B1F	-0,297	0.075
	ALPSMB045064350-O1B1B	-0,124	0,108
GCF_02	ALPSMF045064235-01B1F	0,198	-0,011
	ALPSMB045064350-O1B1B	0,108	-0,048
	ALPSMF045064235-O1B1F	-0,618	0,116
	ALPSMB045064350-O1B1B	-0,047	-0,048
GCP_00	ALPSMF045064235-01B1F	0,397	0,072
	ALPSMB045064350-01B1B	0,004	0,031
	ALPSMB045064355-O1B1B	0,066	0,112
GCP_09	ALPSMF045064235-O1B1F	0,046	-0,107
	ALPSMF045064240-O1B1F	-0,268	0,118
	ALPSMB045064355-O1B1B	-0,059	0,223
	ALPSMF045064240-O1B1F	0,090	-0,156
	ALPSMB045064355-O1B1B	-0,244	-0,099
GCP_11	ALPSMB045064360-O1B1B	-0,105	-0,001
	ALPSMF045064245-01B1F	0,203	-0,024
CCD 10	ALPSMB045064360-O1B1B	0,444	0,158
GCP_12	ALPSMF045064245-01B1F	-0,362	-0,058
	ALPSMB045064355-O1B1B	0,091	-0,399
GCP_13	ALPSMB045064360-O1B1B	-0,019	-0,302
	ALPSMF045064245-01B1F	-0,191	0,403
	ALPSMB045064360-O1B1B	-0,317	0,144
GCP_14	ALPSMF045064245-01B1F	0,348	-0,321
CCD 15	ALPSMB045064355-01B1B	0,697	0,255
	ALPSMF045064240-O1B1F	-0,331	-0,117
	ALPSMB045064355-01B1B	-0,638	-0,097
	ALPSMF045064240-O1B1F	0,804	0,081
	Сполнокрал		MSE) - 0.364 пикоопа

Среднеквадратическое значение (RMSE) = 0,364 пикселя

оводным протокол о невязках				
RMS x, м	1,172			
RMS y, м	2,299			
RMS z, м	3,425			
Среднеквадратическое значение (RMSE), м	4,288			

Таблица 4 водный протокол о невязках Шесть снимков были собраны в блок для уравнивания. Определение положения наземных опорных точек на космических снимках осуществлялось по предоставленным схемам их привязки и фотографиям окружающей местности. Отчет о фототриангуляции приведен в табл. 3 и 4. Модель фототриангуляции позволяет рассчитывать параметры внешнего ориентирования каждого снимка с возможностью из-

Рис. 7. Расположение наземной опорной точки № 15 на снимке с KA ALOS/PRISM

мерения координат X, Y, Z с помощью плавающего курсора.

Для измерения линий перегиба рельефа и высотных точек использовался специальный модуль SOCET SET. Линия перегиба фиксировалась везде. где наблюдалось изменение уклона земной поверхности. Высотное положение точек хорошо определялось на вершинах холмов, а на плоских участках поверхности для точной интерполяции форм рельефа информации было недостаточно. Первоначальная оценка показала, что снимки с КА ALOS/PRISM пригодны для построения горизонталей с сечением 10 м (±5 м). Поэтому плотность фиксации линий перегиба, а также высот отдельных точек проводилась с частотой, необходимой для построения горизонталей с сечением 10 м. Многие линии перегибов имеют форму контуров, которые располагаются на возвышениях или совпадают с направлением изменения уклона (рис. 8).

После создания первоначальной ЦМР с шагом 10 м и ее проверки по наземным опорным точкам, а также после сравнения высот опорных точек, полученных в результате геодезической съемки и измеренных фотограмметрическим способом, было установлено, что стереомодели могут обладать достаточной точностью для отображения рельефа горизонталями с сечением 5 м (точность по высоте ±2,5 м). Для этого потребовались дополнительные измерения высот по линиям перегиба и отдельным точкам рельефа.

Высоты по линиям перегиба и отдельным точкам рельефа экспортировались в AutoCAD в формате DXF как цифровая модель местности (ЦММ), по ним с помощью ГИС-приложения TNTmips методом мини-

Рис. 8.

Фрагмент результатов стереоскопической рисовки рельефа на ортотрансформированном снимке с КА ALOS/PRISM (линии перегиба, горизонтали и высотные точки)

мальной кривизны строилась ЦМР. Методом проб и ошибок определялись параметры интерполяции, чтобы получить сглаженную поверхность без явных

аномалий, появляющихся в результате использования точек с ошибочными значениями высот, не слишком обобщенную, но сопрягающуюся с высот-

> ным положением заданных линий перегиба и отдельных точек рельефа.

Первоначально была построена ЦМР с шагом пикселей 2,5 м. Она подходит для построения горизонталей с сечением рельефа 5 м, поскольку согласно качественной оценке, данная ЦМР имеет аналогичный уровень генерализации, что и карты с сечением рельефа 5 м, опубликованные Департаментом земельных ресурсов штата Новый Южный Уэльс.

Несмотря на то, что ЦМР с шагом 2,5 м подходит для построения горизонталей с сечением рельефа 5 м, было установлено, что этот шаг существенно меньше, чем требуется для правильного отображения рельефа. Был построен ряд ЦМР с шагом 5, 10, 15 и 20 м. Отоб-

ражение рельефа в виде отмывки на каждой ЦМР оценивалось субъективно для определения соответствия размера пикселей уровню детализации цифровой модели местности, на основе которой она была построена (рис. 9-12).

Оценка точности построенной ЦМР проводилась по отклонениям (DZTIN и DZцм) между высотами наземных опорных точек, полученными из GPS-измерений (Z_{GPS}), и высотами этих точек, вычисленными по ЦМР с шагом 10 м (Z_{LMP}) и по сетке TIN (Z_{TIN}). Результаты

оценки по пяти наземным опорным точкам, попавшим в район исследования, приведены в табл. 5.

ОРТОТРАНСФОРМИРОВАНИЕ

Программа TNTmips использовалась для ортотрансформирования снимков, полученных картографической стереокамерой PRISM, по созданной ЦМР. TNTmips позволяет проводить ортотрансформирование любого космического снимка с использованием соответствую-

Таблица 5

№ наземной опорной точки	Х, м	Ү, м	Ζ, м	Z _{цмР} , м	DZ _{цмР} , м	Z _{тіn} , м	DZ _{тіn} , м
15	616508,7609	6161534,1430	429,2810	426,2307	3,0503	425,9333	3,3477
1	615777,3502	6176674,6090	446,0681	439,9567	6,1114	440,5193	5,5488
16	622681,5175	6155809,7240	458,9979	464,1004	-5,1025	464,7564	-5,7585
2	632975,6749	6183448,2100	466,6729	468,4985	-1,8256	468,1329	-1,4600
9	604752,5797	6180590,6140	506,7633	504,9649	1,7984	505,8243	0,9390
RMSE				3,57764		3,4108	

Оценка точности построенной ЦМР

Ортотрансформированная мозаика снимков с KA ALOS/PRISM ших коэффициентов RPC. Параметры внешнего ориен-

щих коэффициентов нг с. параметры внешнего ориентирования снимков с КА ALOS/PRISM определялись с помощью их пространственной привязки по наземным опорным точкам. Затем выполнялось ортотрансформирование снимков по ЦМР с шагом 10 м и их монтаж в ортомозаику в программе TNTmips (рис. 13). Далее проводилась субъективная оценка мозаики по наземным опорным точкам, структурным линиям рельефа, данным GPS-измерений и перекрытию снимков. Наблюдаемая погрешность не превышала 2-3 пикселя, которые соответствуют 5-7,5 м.

КОММЕНТАРИИ

Попытки определения внутренней геометрии космических снимков в SOCET SET с помощью обобщенных моделей космической съемки оказались неудачными. После того, как были использованы коэффициенты RPC, определить внутреннюю геометрию снимка не составило труда. Информация о наземных опорных точках предоставлялась в очень удобном виде. Схематические планы и фотографии, сделанные на местности, позволили определять положение наземных опорных точек на снимках с высокой точностью. На шесть снимков попали лишь 12 из 16 наземных опорных точек. На каждом снимке присутствовали от 2 до 4 опорных точек, что является минимально необходимым количеством для определения параметров внешнего ориентирования, но недостаточным для составления детального протокола о невязках. Только 5 наземных опорных точек попали в исследуемый район.

Связующие точки между снимками не измерялись. При съемке обширного участка точки привязки могли использоваться для создания расширенной триангуляционной модели, что, в свою очередь, повлияло бы на объем наземной съемки, необходимой при реализации крупных проектов.

Величины невязок модели фототриангуляции показывают, что на основе этих данных нельзя построить горизонтали с сечением рельефа 5 м, которые требуют определения высотных отметок рельефа с точностью порядка 2,5 м. Точность, подтвержденная фототриангуляцией, составила порядка 3,5 м.

Первоначально элементы рельефа снимались с плотностью, необходимой для построения горизонталей с сечением 10 м (±5 м). После создания ЦМР с шагом 10 м и построения горизонталей, в результате первоначальной обработки, было установлено, что точность фототриангуляции существенно выше, чем требуется для данной задачи. Для повышения плотности точек, линий перегиба и контуров, пригодных для построения горизонталей с сечением рельефа 5 м была применена повторная итерация с использованием стереоизображения, которая показала, что, судя по всему, полученные значения вертикальной точности будут недостаточны для построения горизонталей с сечением рельефа 5 м. Несмотря на это, было очевидно, что можно достичь большей точности, чем требуется для построения горизонталей с сечением 10 м, поэтому представлялось целесообразным определить достижимое значение точности.

Несмотря на то, что в исследуемый район попали только 5 наземных опорных точек, которых недостаточно для достоверной оценки точности, полученные невязки между данными, измеренными спутниковыми приемниками GPS на наземных опорных точках и данными, полученными по ЦМР и сети TIN, показывают, что погрешность составляет порядка 3,5 м и совпадает с результатами фототриангуляции. Необходимо отметить, что опорные точки не отображались при стереообработке, однако смещения объектов, расположенных рядом с опорными точками, не наблюдалось.

Для создания цифровых моделей местности и получения производной информации могут использоваться различные данные. Выбор подходящего метода картографирования земной поверхности зависит, в основном, от уровня точности, требуемого разрешения и площади района. Ниже приводится перечень методов в порядке возрастания стоимости работ:

- 1. Наземная съемка.
- 2. Наземное лазерное сканирование.
- 3. Аэрофотосъемка.
- Воздушная радиолокационная съемка (интерферометрия).
- 5. Воздушное лазерное сканирование.
- 6. Космическая стереосъемка.

 Космическая радиолокационная съемка (интерферометрия).

Из вышеуказанного списка только аэрофотосъемка, воздушная радиолокационная съемка, воздушное лазерное сканирование и космическая стереосъемка могут применяться для создания ЦМР с шагом от 5 до 25 м.

Было установлено, что для создания ЦМР на базе стереоснимков с KA ALOS/PRISM с точностью от 5 до 10 м требуется приблизительно 200-400 часов на каждую сцену площадью 1600 км² в зависимости от сложности рельефа. При расчете по коммерческим расценкам это приблизительно соответствует затратам от 15 000 до 30 000 дол. на каждую сцену или от 4 до 8 дол. за 1 км².

Затраты на воздушное лазерное сканирование и воздушную радиолокационную съемку составляют порядка 100-150 дол. за 1 км², в зависимости от площади района.

Применение снимков КА ALOS/PRISM экономически выгоднее при съемке небольших районов ввиду того, что с увеличением площади затраты на работы, связанные с созданием наземных опорных точек, увеличиваются в большей пропорции, чем при воздушном лазерном сканировании, воздушной радиолокационной съемке и аэрофотосъемке. Преимуществом снимков KA ALOS/PRISM также является и то, что затраты на построение ЦМР находятся в пропорциональной зависимости от требуемой точности. Поэтому затраты на построение ЦМР с точностью от 10 до 15 м будут составлять менее половины тех затрат, которые необходимы для создания ЦМР с точностью от 5 до 10 м.

По результатам выполненного проекта можно сделать следующие выводы:

 Для фотограмметрической обработки с целью создания ЦМР с помощью снимков с KA ALOS/PRISM в SOCET SET необходимо иметь значения коэффициентов RPC.

 С помощью наземных опорных точек можно точно определить параметры внешнего ориентирования снимков с KA ALOS/PRISM с точностью до субпикселя.

3. При наличии точной блочной модели, созданной в SOCET SET, параллакс между изображениями, полученными картографической стереокамерой PRISM в режимах «вперед» и «назад», достаточен для измерения высот точек с точностью приблизительно 3,5 м (среднеквадратическое значение). Это соответствует пределу теоретической точности, которую можно достичь при небольшом количестве наземных опорных точек и применении данных методов.

 Из результатов данного проекта непонятно, насколько дополнительные наземные опорные точки и увеличение блока космических снимков может повысить точность.

 Точность ЦМР и построения горизонталей зависит от плотности измерения высот отдельных точек и элементов рельефа, сложности рельефа вплоть до теоретического предела 3,5 м (среднеквадратичное значение).

 Снимки с КА ALOS/PRISM можно ортотрансформировать для создания высококачественных панхроматических изображений с точностью приблизительно до 2 пикселей.

 Применение изображений с КА ALOS/PRISM экономически выгодно при создании ЦМР и построения горизонталей с вертикальной точностью от 5 до 10 м.

 Преимуществом изображений с КА ALOS/PRISM также является возможность создания трехмерных моделей с точностью, обеспечивающей создание картографических материалов в масштабе 1:25 000. Нанесение линий водоразделов позволяет согласовать ЦМР с гидрографической сетью.