

## **И.В. Оньков** (ООО «Тримм», Пермь)

В 1970 г. окончил МИИГАиК по специальности «астрономгеодезист». В настоящее время— научный консультант ООО «Тримм». Кандидат технических наук.

# Исследование точности

# измерения координат точек на ортоснимках RapidEye в зависимости от их геометрического типа

#### **ВВЕДЕНИЕ**

При решении задач картографирования по материалам космической съемки определяющим фактором является геометрическая точность ортоснимков. Некоторые результаты экспериментальных исследований геометрической точности ортоснимков космического аппарата (КА) RapidEye, выполненных в ООО «Тримм» и предприятии «Уралгеоинформ», отражены в работах [1-3].

Основной задачей данных исследований является оценка точности измерений координат точек на ортоснимках и ортомозаике RapidEye в зависимости от их геометрического типа.

Решение этой задачи необходимо для обоснованного выбора типа опорных точек при ортотрансформировании и геометрической коррекции снимков RapidEye, а также при оценке реальной точности оцифровки точечных, линейных и площадных объектов местности при создании (обновлении) топографических и специальных карт и планов.

#### СОЗДАНИЕ И ИЗМЕРЕНИЯ ОРТОСНИМКОВ


Для выполнения исследований были использованы два мультиспектральных снимка RapidEye на территорию г. Перми и прилегающих районов, предоставленные компанией «Совзонд» для выполнения тестовых исследований (табл. 1).

Ортотрансформирование исходных снимков было выполнено в программе ENVI 4.6 с использованием коэффициентов рациональных полиномов RPC, включенных в файлы снимков формата NITF, и цифровой модели рельефа Земли SRTM. Выходная проекция ортоснимков — Гаусса-Крюгера, система координат — СК-42. Средняя высота геоида над эллипсоидом принималась равной нулю, размер пикселя выходного ортоизображения — 6,5 м. Наземные опорные точки при ортотрансформировании не использовались. Ортомозаика была создана в графическом редакторе по координатам угловых точек растра, полученных в результате ортотрансформирования снимков RE4 и RE5.

Таблица 1

#### Основные характеристики снимков и условий съемки

| Номер продукта | Номер (имя)<br>спутника | Уровень<br>обработки | Дата<br>съемки | Надирный угол<br>(град.) | Высота Солнца<br>(град.) |
|----------------|-------------------------|----------------------|----------------|--------------------------|--------------------------|
| ID1331830      | RE4 (Choros)            | 1B                   | 13.07.09       | 6,5                      | 54,0                     |
| ID1331952      | RE5 (Trochia)           | 1B                   | 14.07.09       | 3,0                      | 53,7                     |



Выбор измеряемых точек был ограничен территорией г. Перми в его административных границах, на которую были созданы в ООО «Тримм» ортофотопланы города по снимкам КА IKONOS с разрешением 1 м в рамках муниципальной программы по мониторингу городской территории.

Измерения координат опорных и контрольных точек на ортоснимках выполнялись в растровом редакторе с дискретностью 0,2 пикселя (1,3 м на местности). Геодезические координаты этих же точек измерялись на ортофотопланах города с ошибкой не более 2 м (средняя радиальная ошибка измерения координат составила 0,8–1,0 м). Это позволило рассматривать их как «истинные координаты» и использовать для оценки и анализа точности ортоснимков RapidEye (рис.1).

В общей сложности на ортоснимках и ортомозаике было измерено и принято в обработку 900 точек. Все измеряемые точки были разделены на три основных геометрических типа:

- Центры объектов круглой формы (в основном резервуары для хранения нефтепродуктов); далее в таблицах обозначены символом «О» (рис. 2a).
- 2. Примыкания и пересечения осевых линий линейных объектов (в основном автодороги и улицы в населенных пунктах); далее в таблицах обозначены символом «Тг» (рис. 2б).
- 3. Угловые точки объектов прямоугольной формы (в основном углы зданий и сооружения, площадки); далее в таблицах обозначены символом «Г» (рис. 2в). Примеры выбора основных типов измеряемых точек на ортоснимках приведены на рис. 3а-е.





#### ГЕОМЕТРИЧЕСКАЯ КОРРЕКЦИЯ ОРТОСНИМКОВ

Геометрическая коррекция ортоснимков выполнялась для устранения остаточных систематических ошибок ортоснимков, возникающих в основном вследствие ошибок коэффициентов рациональных полиномов (RPC), ошибок параметров преобразования систем координат (WGS-84 CK-42) и ошибок в высоте геоида над эллипсоидом относимости.

В совокупности эти ошибки (в линейном приближении) приводят к сдвигу, изменению масштаба и развороту осей растровой системы координат ортосним-ков относительно геодезической системы координат.

Оценка указанных параметров сдвига, масштаба и разворота выполнялась с использованием конформного преобразования Гельмерта

$$X = a_0 + a_1 x - b_1 y$$
  
 
$$Y = b_0 + b_1 x + a_1 y,$$

которое в эквивалентной геометрической форме имеет вид

$$\begin{split} X &= X_0 + s \cdot (\cos \varphi \cdot x - \sin \varphi \cdot y) \\ Y &= Y_0 + s \cdot (\sin \varphi \cdot x + \cos \varphi \cdot y), \end{split}$$

где:  $X_0, Y_0$  – координаты начала системы координат OXY в системе координат OXY,

S — масштабный коэффициент;

 $\varphi$  — угол поворота системы координат  $\mathit{OXY}$ 

относительно системы OXY.

Соотношения между двумя системами параметров выражаются формулами

$$a_0=X_0,\ b_0=Y_0;\ a_1=s\cdot\cos\varphi\,,$$
 
$$b_1=s\cdot\sin\varphi\,;\ \varphi=arctg\frac{b_1}{a_1}\,,$$
 
$$s=\sqrt{{a_1}^2+{b_1}^2}\,. \tag{1}$$

В табл. 2 приведены значения геометрических параметров преобразования Гельмерта  $X_0,Y_0,\varphi,s$ , вычисленные по МНК-оценкам коэффициентов  $a_0,a_1,b_0,b_1$  с использованием соотношений (1).

## ОЦЕНКА ТОЧНОСТИ ИЗМЕРЕНИЙ ОРТОСНИМКОВ ПО ОСТАТОЧНЫМ ОТКЛОНЕНИЯМ

Полученные в результате обработки по методу наименьших квадратов (МНК) остаточные отклонения измеренных координат опорных точек от уравненных

Таблица 2 Оценки параметров преобразования Гельмерта

| Ортоснимок | Тип объекта | Объем<br>выборки п | Х <sub>0</sub> ,м | Y <sub>0</sub> ,M | φ"   | s        |
|------------|-------------|--------------------|-------------------|-------------------|------|----------|
| RE4        | 0           | 82                 | 6415192,14        | 433178,63         | 7,3  | 0,999886 |
|            | Ŧ           | 67                 | 6415190,32        | 433178,51         | 4,4  | 0,999947 |
|            | Г           | 112                | 6415092,89        | 433174,32         | 37,5 | 0,999850 |
| RE5        | 0           | 92                 | 6408789,10        | 428384,47         | -1,5 | 0,999939 |
|            | ₩           | 58                 | 6408790,20        | 428383,46         | 10,9 | 0,999960 |
|            | Г           | 127                | 6408793,28        | 428381,91         | 21,1 | 0,999927 |
| Mosaic     | 0           | 128                | 6417045,56        | 438437,67         | 9,8  | 0,999838 |
|            | ₩           | 98                 | 6417045,90        | 438437,46         | 22,6 | 0,999874 |
|            | Г           | 130                | 6417049,17        | 438434,70         | 50,6 | 0,999810 |

рассматривались как случайные ошибки, обусловленные в основном ошибками измерений координат точек на растре (опознавания и наведения), ошибками дискретизации растра и методическими ошибками принятой математической модели преобразования.

Оценка точности измерений выполнялась по остаточным отклонениям координат  $\mathcal{V}_x$ ,  $\mathcal{V}_y$  для каждого типа измеряемых точек и каждого снимка отдельно. Вычислялись следующие основные показатели точности:

ullet стандартная среднеквадратическая ошибка  $\sigma_{_{\! xv}}$ :

$$\sigma_{xy} = \sqrt{(\sigma_x^2 + \sigma_y^2)/2} = \sqrt{\sum_{i=1}^n (v_x^2 + v_y^2)/2(n-k)}$$

где n- объем выборки (число точек), k- минимально необходимое число точек (k=2- для преобразования Гельмерта);

• средняя радиальная ошибка MRE:

$$MRE = \frac{1}{(n-k)} \sum_{i=1}^{n} \sqrt{v_x^2 + v_y^2}$$

• максимальная радиальная ошибка  $R_{\text{max}}$  в выборке.

Результаты оценки точности измерения координат точек на ортоснимках и ортомозаике приведены в табл. 3.

На рис. 4 в качестве примера приведен график зависимости стандартной среднеквадратической

Показатели точности измерения координат точек на ортоснимках

| Ортоснимок | Тип объекта | Объем выборки n | σ <sub>xy</sub> , M | MRE, м | R <sub>max</sub> , м |
|------------|-------------|-----------------|---------------------|--------|----------------------|
| RE4        | 0           | 82              | 1,63                | 2,08   | 4,84                 |
|            | ┰           | 67              | 1,85                | 2,41   | 4,71                 |
|            | Γ           | 112             | 2,79                | 3,57   | 7,93                 |
| RE5        | 0           | 92              | 1,53                | 1,95   | 4,36                 |
|            | ┰           | 58              | 1,70                | 2,16   | 4,59                 |
|            | Γ           | 127             | 2,59                | 3,26   | 7,78                 |
| Mosaic     | 0           | 128             | 1,60                | 2,04   | 4,22                 |
|            | ┰           | 98              | 1,74                | 2,31   | 4,44                 |
|            | Г           | 130             | 2,83                | 3,61   | 7,81                 |

Таблица 3



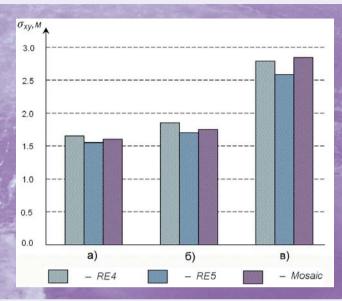



Рис. 4. Зависимость стандартной среднеквадратической ошибки  $\sigma_{xy}$  от геометрического типа измеряемой точки:

- а центры объектов круглой формы;
- б пересечения и примыкания осевых линий линейных объектов;
- в угловые точки объектов прямоугольной формы.

ошибки  $\sigma_{xy}$  от типа измеряемой точки для ортоснимков RE4, RE5 и ортомозаики по данным табл. 3.

#### ЗАКЛЮЧЕНИЕ

- 1. На основе достаточно большого статистического материала экспериментально выявлена зависимость точности измерения координат точек на ортоснимках RapidEye от их геометрического типа. Показано, что точность измерения координат точек объектов, обладающих определенной геометрической симметрией, в 1,5 1,7 раза выше, чем угловых точек прямоугольных объектов.
- 2. Точность измерения координат точек вне зависимости от их геометрического типа удовлетворяет требованиям, предъявляемым к точности фотопланов масштаба 1:10 000: средняя радиальная ошибка (MRE) во всех сериях измерений не превосходит 4 м, максимальная ошибка не более 8 м.

Результаты исследований могут быть использованы при выборе типа опорных точек при геометрической коррекции ортоснимков RapidEye, а также для оценки реальной точности оцифровки точечных, линейных и площадных объектов местности при создании (обновлении) топографических и специальных карт и планов.

#### Список литературы

- 1. Оньков И.В. Исследование геометрической точности ортотрансформированных снимков RapidEye // Геоматика. 2009. № 4(5). С.21-27.
- 2. Оньков И.В. Исследование геометрической точности ортоснимков RapidEye, ALOS и ALOS+RapidEye // Геопрофи. 2009. № 6. C.48-51.
- 3. Кобзева Е.А. Обновление цифровых топографических карт по снимкам RapidEye: результаты исследования // Пространственные данные. — 2009. — №4. — C.47-50.