

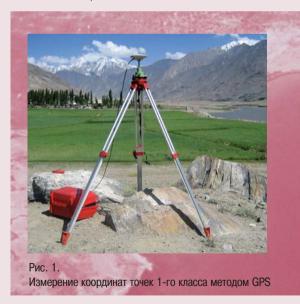
Р. Качиньски (Проект Европейской комиссии в Таджикистане)

В 1967 г. окончил Военный технический университет в Варшаве (Польша). Профессор, доктор технических наук, эксперт по фотограмметрии и обработке спутниковых данных. Руководитель Проекта Европейской комиссии в Таджикистане.

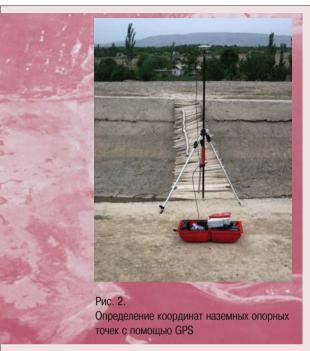
С. Марахина (Проектно-исследовательский институт «ФАЗО», Таджикистан)

В 2008 г. окончила Российско-таджикский славянский университет, затем окончила курсы по цифровой фотограмметрии и картографии. В настоящее время — руководитель отдела фотограмметрии Проектноисследовательского института «ФАЗО» (Таджикистан).

Технология цифрового


кадастрового картографирования в Таджикистане с использованием спутниковых данных высокого разрешения*

Общей целью проекта «Содействие в усилении потенциала Агентства по землеустройству, геодезии и картографии (АЗГК) в сфере картографии и сертификации» Республике Таджикистан, финансированного Европейской комиссией, является поддержка более открытой и эффективной реализации процесса земельной реформы в Таджикистане. Конкретной целью проекта является укрепление потенциала института «ФАЗО» (находящего в подчинении АЗГК) в сфере спутниковой геодезии, цифровой фотограмметрии, цифровой обработки спутниковых изображений и цифровой картографии.


Основными целями проекта являются:

- проведение лекций и тренингов для штата «ФАЗО» по спутниковой геодезии, цифровой фотограмметрии и использованию спутниковых данных высокого разрешения для кадастрового картографирования сельскохозяйственных земель;
- создание и измерение новых геодезических GPS сетей 1-го и 2-го классов (рис. 1);
- идентификация наземных опорных и контрольных точек, измерение их методом GPS для орторектификации спутниковых снимков (рис. 2);

 ориентирование и орторектификация спутниковых изображений: IKONOS, QuickBird, WorldView-1,2 и GeoEye-1 на фотограмметрических цифровых рабочих станциях Leica Photogrammetric Suite ERDAS Inc:

статья подготовлена по результатам выполненного проекта - победителя конкурса «Лучшие проекты в области ГИС-технологий и ДЗЗ» в рамках IV Международной конференции «Космическая съемка - на пике высоких технологий»

- создание технических пособий, стандартных операционных процедур и системы контроля качества для всех этапов картографической продукции;
- разработка и внедрение методов цифровой картографии для кадастрового картографирования с использованием ArcGIS;
- предоставление технической помощи проекту Всемирного банка и проведение тренингов для штата региональных земельно-кадастровых центров;
- изготовление технологий для цифрового кадастрового картографирования с использованием спутниковых данных высокого разрешения.

Развитие современной кадастровой системы невозможно без создания цифровых кадастровых карт в открытой системе координат. С этой целью при финансировании проекта Всемирного банка была создана новая геодезическая система координат и геодезическая GPS-сеть. На основе цифровых ортофотокарт в институте «ФАЗО» создается картографический слой сельскохозяйственных границ

с использованием программного обеспечения ArcGIS. Технические пособия по спутниковой геодезии, цифровой фотограмметрии, спутниковым данным высокого разрешения и цифровой картографии были разработаны на английском и русском языках и используются в практических работах в институте «ФАЗО».

Более двух тысяч цифровых ортофотокарт в масштабе 1:5000 были созданы с панхроматических данных IKONOS и QuickBird с установленной точностью CKO<1,5 м.

Данные:

- 1) IKONOS Pan GeoOrthoKit и QuickBird Ortho Ready Pan с углом отклонения снимка от надира не больше чем 17° .
- 2) Опорные и контрольные точки с координатами X, Y, Z.

IKONOS PAN и RPC: минимум 5 опорных и 3 контрольных.

QuickBird PAN и ISD: минимум 9 опорных и 3 контрольных.

- 3) Цифровая модель рельефа (DEM) из данных SRTM.
- 4) Система координат для создания кадастровых карт.

Необходимые дополнения:

- 5) Цифровая фотограмметрическая станция с программами для обработки IKONOS, QuickBird, GeoEye, WorldView.
 - 6) Специалисты по цифровой фотограмметрии
 - 7) Специалисты по GPS.
 - 8) Специалисты по цифровой картографии.
 - 9) Ноу-хау, технологии и методика оценки точности.

Среднеквадратическая ошибка СКО идентификации и измерения опорных точек методом GPS: горизонтальная — **CKOx** = **CKOy** < **0,6 м**; вертикальная — **CKOz** < **1,0 м**

СКО спутниковой триангуляции на опорных и контрольных точках представлены в табл. 1.

Результаты спутниковой триангуляции

Таблица 1

	Район	Спутник	Кол-во опорных точек	Кол-во контрольных точек	СКО (м)			
Nº					на опорных точках		на контр. точках	
					Х	Υ	Х	Υ
1	Колхозабад (17 х 19 км)	QuickBird	21	6	0,4	0,5	0,6	0,7
2	Шахринав (18 x 11 км)	QuickBird	14	11	0,5	0,3	0,4	0,4
3	Гиссар (17 x 20 км)	QuickBird	12	5	0,4	0,5	0,5	0,7
4	Яван_2 (18 х 75 км)	QuickBird	75	6	0,5	0,5	0,5	0,6
5	Турсунзода (17 х 21 км)	QuickBird	12	4	0,3	0,5	0,6	0,3
6	Ашт (17 х 19 км)	QuickBird	11	3	0,4	0,5	0,5	0,4
7	Шахристан (18 x 36 км)	QuickBird	18	7	0,5	0,4	0,5	0,4
8	Истаравшан (15 х 35 км)	QuickBird	17	5	0,5	0,4	0,6	0,3
9	Канибадам (17 x 14 км)	QuickBird	13	5	0,4	0,4	0,4	0,5
10	Колхозабад_2 (17 x 95 км)	QuickBird	88	6	0,5	0,5	0,5	0,4
Σ_{cp}					0,44	0,45	0,51	0,47
11	Таджикабад (13 x 7 км)	IKONOS	10	3	0,4	0,3	0,4	0,5
12	Яван (11 х 28 км)	IKONOS	26	5	0,4	0,5	0,5	0,6
13	Файзабад (11 х 10 км)	IKONOS	12	6	0,4	0,4	0,6	0,6
	$\Sigma_{\!\scriptscriptstyle{cp}}$					0,40	0,50	0,57

Таблица 2 **СКО ЦМР для высот (RMS_Z) из данных SRTM, опорных и контрольных точек, измеренных GPS**

		· / 11:		and the second second
Nº	Район	Спутник	Угол наклона детектора от N	CKO _∆ Z (м)
	Колхозабад	QuickBird	12,8°	2,7
2	Шахринав	QuickBird	14,3°	3,6
3	Гиссар	QuickBird	13,6°	4,2
4	Яван_2	QuickBird	15,0°	2,9
5	Турсунзода	QuickBird	14,1°	4,0
6	Ашт	QuickBird	15,0°	2,6
7	Шахристан	QuickBird	12,5°	3,7
8	Истаравшан	QuickBird	17,1°	2,6
9	Канибадам	QuickBird	11,3°	2,5
10	Колхозабад_2	QuickBird	1,8°	3,3
		3,2		
11	Таджикабад	$\begin{array}{c c} \Sigma_{\rm cp} \\ \hline \\ {\rm IKONOS} \end{array}$	13,0°	2,9
12	Яван	IKONOS	9,5°	2,2
13	Файзабад	IKONOS	14,0°	5,0
			$\Sigma_{\sf cp}$	3,4

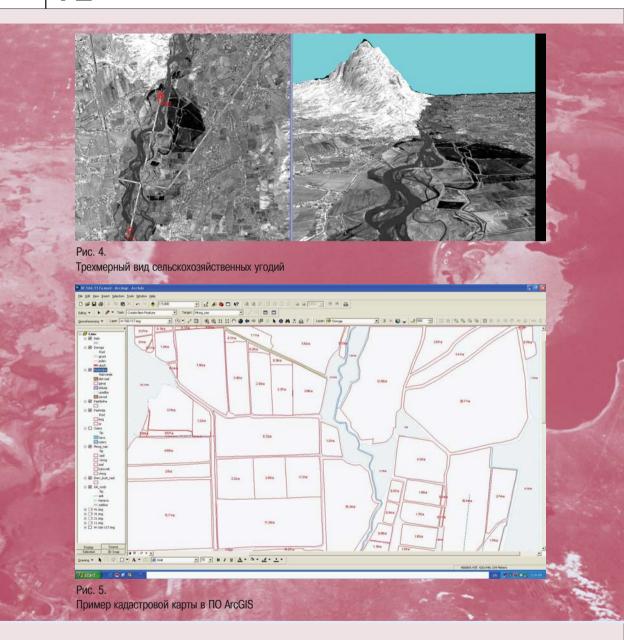
Таблица 3 Точность цифрового ортоизображения

Nº	Район	Спутник	Угол наклона детектора от N	СКОх (м)	СКОу (м)	СКОху (м)	СЕ90% (м)
1	Колхозабад	QuickBird	12,8°	0,7	0,8	1,1	2,4
2	Шахринав	QuickBird	14,3°	0,8	0,9	1,2	2,6
3	Гиссар	QuickBird	13,6°	0,8	0,7		2,4
4	Яван_2	QuickBird	15,0°	0,8	0,9	1,2	2,6
5	Турсунзода	QuickBird	14,1°	0,8	0,9	1,2	2,6
6	Ашт	QuickBird	15,0°	0,5	0,6	0,8	1,7
7	Шахристан	QuickBird	12,5°	0,8	0,9	1,2	2,6
8	Истаравшан	QuickBird	17,1°	0,4	0,8	0,9	1,9
9	Канибадам	QuickBird	11,3°	0,8	0,7	1,1	2,4
10	Колхозабад_2	QuickBird	1,8°	0,5	0,6	0,8	1,7
Σ_{cp}						1,1	2,3
11	Таджикабад	IKONOS	13,0°	0,6	0,4	0,7	1,5
12	Яван	IKONOS	9,5°	0,7	0,6	0,9	2,0
13	Файзабад	IKONOS	14,0°	0,8	0,9	1,2	2,6
Σ_{cp}						0,9	2,0

Цифровая модель рельефа (DEM)

Чем больше угол отклонения луча от надира, тем смещение точки на снимке будет больше. Поэтому угол отклонения луча от надира не должен быть больше, чем 17°.

Среднеквадратическая ошибка цифровой модели рельефа (ЦМР) для высот (СКО приблизительно 4 м для открытых, равнинных районов (табл. 2). Доступны ЦМР 3" (грид 90 м) в формате DTED.


Орторектификация

Ортофото с IKONOS Рал генерируется пикселем 1х1 м, используя биленарный метод ресемплинга. Ортофото с QuickBird Рал генерируется пикселем 0,5х0,5 м для 1:5000 и пикселем 1х1 м для 1:10 000, используя биленарный метод ресемплинга; точность ортофото CKOx, $y \le 2$ пикселя (табл. 3).

Ниже представлена схема создания цифровой ортофотокарты в масштабе 1:10 000 и 1:5000 по одиночным космическим снимкам IKONOS или QuickBird (рис. 3).

Контроль качества цифрового ортофотоизображения производился визуальным методом и проверкой картографической точности на основе координат опорных и контрольных точек. На основе цифровых

ортофотокарт создается картографический слой сельскохозяйственных границ с использованием программного обеспечения ArcGIS (рис. 4, 5).