М. В. Шинкевич (000 «Финко», Ижевск) Директор 000 «Финко».

Н. Г. Воробьева (ООО «Финко», Ижевск)

Начальник отдела камеральной обработки ООО «Финко».

М. А. Алтынцев (СГУГиТ, Новосибирск)

Старший преподаватель кафедры инженерной геодезии и маркшейдерского дела Сибирского государственного университета геосистем и технологий (СГУГиТ). Кандидат технических наук.

Р. А. Попов (СГУГиТ. Новосибирск)

Инженер научно-исследовательского сектора СГУГиТ.

С. А. Арбузов (СГУГиТ, Новосибирск)

Старший преподаватель кафедры физической геодезии и дистанционного зондирования СГУГиТ. Кандидат технических наук.

А. В. Флоров (Институт конструкторско-технологической информатики РАН, Москва)

Младший научный сотрудник Института конструкторско-технологической информатики РАН (ИКТИ РАН). Кандидат технических наук.

Оценка точности плотной цифровой модели поверхности и ортофотопланов, полученных по материалам аэрофотосъемки с БЛА серии Supercam

Современные специализированные программные продукты позволяют в автоматическом режиме по материалам аэрофотосъемки получить плотную цифровую модель поверхности (ЦМП) в виде плотного облака трехмерных точек. Точность такой модели зависит от многих факторов, таких, как: качество исходных снимков, наличие и точность определения координат центров фотографирования, координат точек планово-высотного обоснования, и в значительной степени определяется техническими характеристиками беспилотного летательного аппарата (БЛА), применяемого для аэрофотосъемки, а также установленного на нем оборудования.

Разработанные группой компаний «Беспилотные системы» БЛА серии Supercam обладают высокой надежностью и стабильностью автоматического полета, позволяют

обеспечивать аэрофотосъемку с высоким разрешением на протяжении от 3 до 7 часов в зависимости от модификации БЛА. В конструкциях БЛА серии Supercam заложены все необходимые системы для получения высококачественных снимков с точной геодезической привязкой к местности и возможностью дистанционного изменения параметров съемки в зависимости от погодных условий. Рассмотрим возможности применения БЛА серии Supercam для выполнения аэрофотосъемки и создания ЦМП и ортофотопланов по ее результатам.

Для проведения детального исследования точности создания ЦМП и ортофотопланов компанией «Беспилотные системы» была произведена аэрофотосъемка вблизи г. Новосибирска. Аэрофотосъемкой была охвачена территория двух поселков и шоссе между ними. Протяженность участка съемки

составила 4800 м, перепад высот — 20 м.

Для целей аэрофотосъемки был использован БЛА Supercam S250 (рис. 1), оснащенный двухчастотным приемником, камерой Sony Alpha ILCE-6000 с матрицей 24 Мпикс, объективом с f=20 мм и с параметрами съемки ISO 800, выдержка 1/1000. Аэрофотосъемка производилась с различных высот (150, 200 и 250 м).

Аэрофотосъемка выполнялась по двум маршрутам в разных направлениях, продольное перекрытие составило 80%, поперечное — 60%.

Рис. 1. БЛА модели Supercam S250

Методом инструментальных геодезических измерений на участке съемки были получены координаты 30 опорных и 15 контрольных точек с точностью, необходимой для сгущения фотограмметрического блока.

По каждому из трех полетов было построено пять фотограмметрических моделей с разным набором исходных данных для планово-высотной привязки материалов аэрофотосъемки:

- по координатам центров фотографирования:
- по координатам центров фотографирования и 30 опознакам через 250 м;

- по координатам центров фотографирования и 16 опознакам через 500 м;
- по координатам центров фотографирования и 12 опознакам через 1000 м;
- по координатам центров фотографирования и 6 опознакам через 2300 м (по краям и середине участка).

Таким образом, было построено 15 основных вариационных моделей. Построение всех моделей местности выполнялось в ПО Photoscan.

По результатам сравнения точности построения фотограмметрических моделей, полученных с разных высот, был сделан вывод, что в данном случае аэрофотосъемки оптимальной высотой полета для обеспечения точности съемки масштаба 1:500 с сечением рельефа 0,5 и 1 м является высота 200 м:

- на всех пяти перечисленных вариантах при построении фотограмметрических сетей средние величины расхождений планового положения опорных точек не превысили 5–10 см, контрольных точек 5–15 см, что соответствует точности съемки масштаба 1:500:
- средние величины расхождений высотного положения опорных точек в фотограмметрических сетях, полученных с использованием центров проекции и опознаков, расставленных через 250, 500, 1000 и 2300 м, не превысили 5–7,5 см, контрольных 5–10 см, что соответствует точности съемки с сечением рельефа 0,5 м;
- средние величины расхождений высотного положения опорных точек в фотограмметрической сети, полученной с использованием центров проекции и опознаков, расставленных через 4600 м, не превысили 15 см, контрольных 20 см что соответствует точности съемки с сечением рельефа 1 м.
- В результате для построения ЦМП был выбран вариант с использованием при построении сети 16 опорных точек и координат центров проекции. Цифровая модель

поверхности в виде плотного облака точек и ортофотопланы были созданы в двух системах координат: в WGS-84 /UTM44 N и в местной системе координат МСК-54, зона 4.

Для проведения подробной оценки точности созданной продукции Сибирским государственным университетом геосистем и технологий (СГУГиТ) совместно с администрацией г. Новосибирска было выполнено мобильное лазерное сканирование (МЛС) исследуемого участка (рис. 2). Съемка выполнялась при движении транспортного средства со средней скоростью 40 км/ч. Применялась мобильная лазерная сканирующая система Riegl VMX-250. По заявленным техническим характеристикам данная система обладает абсолютной точностью измерения координат точек местности 5 см. Вдоль участка съемки было выполнено сканирование как в прямом, так и в обратном направлениях.

Рис. 2. Ортофотоплан с траекторией МЛС

Данные мобильного лазерного сканирования впоследствии были откалиброваны, уравнены, а также трансформированы в местную систему координат. Обработка данных мобильного лазерного сканирования выполнялась специалистами регионального центра лазерного сканирования СГУГиТ. В таблице 1 приведены результаты относительной оценки точности уравнивания по

опорным точкам, а в таблице 2 — по контрольным точкам. Всего было использовано 26 опорных и 10 контрольных точек.

	Х, м	Ү, м	Ζ, м
Средняя ошибка	0,002	0,002	0,002
СКО	0,006	0,007	0,003
Максимальная ошибка	0,037	0,041	0,028

Табл. 1. Относительная оценка точности уравнивания данных мобильного лазерного сканирования по опорным точкам

	Х, м	Ү, м	Z, м
Средняя ошибка	0,012	0,010	0,003
СКО	0,015	0,013	0,005
Максимальная ошибка	0,033	0,037	0,011

Табл. 2. Относительная оценка точности уравнивания данных мобильного лазерного сканирования по контрольным точкам

Для абсолютной оценки точности уравнивания данных мобильного лазерного сканирования на исследуемом участке с помощью GPS-приемников Trimble 5700 в статическом режиме были измерены координаты 7 контрольных точек, располагающихся на углах дорожной разметки и бордюров. В таблице 3 приведены результаты абсолютной оценки точности уравнивания данных мобильного лазерного сканирования по координатам контрольных точек, измеренных с помощью GPS-приемника.

	Х, м	Ү, м	Z, м
Средняя ошибка	0,009	0,030	0,029
СКО	0,021	0,053	0,034
Максимальная ошибка	0,044	0,031	0,051

Табл. 3. Абсолютная оценка точности уравнивания данных мобильного лазерного сканирования по контрольным точкам

Согласно [1] «точки съемочной геодезической сети, используемые для

фотограмметрического сгущения, должны иметь среднюю погрешность в плане, не превышающую 0,1 мм в масштабе составляемой карты (плана) и 0,1 принятой высоты сечения рельефа — по высоте (относительно ближайших пунктов государственной геодезической сети и геодезических сетей сгущения)», т. е., полученные материалы мобильного лазерного сканирования (рис. 3) могут быть использованы в качестве планововысотного обоснования и в качестве источника контрольных точек.

Для исследования точности планового положения точек ортофотоплана, построенного по ЦМП, использовались точки, расположенные на контурах объектов застройки и городской инфраструктуры. Сравнивались координаты точек, измеренных на ортофотоплане, с координатами соответственных точек, полученных по материалам МЛС. На рисунке 4 красным цветом показан пример точки. Всего для контроля было выбрано порядка 100 точек.

Рис. 3. Размещение точек для оценки точности планового положения ортофотоплана: а) ортофотоплан; б) данные МЛС

	Х, м	Ү, м	Z, м
Средняя ошибка	0,047	0,074	_
СКО	0,068	0,095	_
Максимальная ошибка	0,214	0,226	_

Табл. 4. Оценка точности положения точек ортофотоплана

	Х, м	Ү, м	Z, м
Средняя ошибка	0,048	_	_
СКО	0,082	_	_
Максимальная ошибка	0,384	_	_

Табл. 5. Оценка точности высотного положения точек ЦМП

В таблице 4 приведена оценка точности положения точек ортофотоплана. СКО на контрольных точках по координате X составила 0,068 м, а по координате Y – 0,095 м, что соответствует требованиям к созданию планов масштаба 1:500.

Оценка точности высотного положения точек ЦМП выполнялась также по материалам МЛС. Визуальный анализ показал, что участки ЦМР, непосредственно прилегающие к фильтрованным объектам, а также ограж-дения несколько искажают модель, особенно на застроенной части. Поэтому измерялись высотные отметки на поперечных профилях дороги. Профили строились через каждые 100 м, и измерялось по 3 точки на каждом профиле. В таблице 5 приведена оценка точности высотного положения точек ЦМП.

Принимая во внимание результаты оценки точности по высоте, можно сделать вывод, что точки цифровой модели местности, полученные в результате фотограмметрической обработки снимков, прилегающие к поверхности земли, и отстоящие от высотных объектов на некотором расстоянии, имеют точность цифровой модели рельефа, достаточную для съемки с сечением рельефа 0,5 м.

Таким образом, была выполнена детальная оценка точности построения плотной цифровой модели рельефа и ортофотопланов, созданных в ПО Photoscan по материалам аэрофотосъемки с БЛА Supercam-250. Результаты исследований показали, что данная продукция соответствует точности, необходимой для создания топографических планов масштаба 1:500 с сечением рельефа 0,5 м.

Необходимо отметить, что для получения точной картографической продукции не всегда достаточно только наличия ортофотоплана и ЦМП, необходимо иметь возможность видеть полученную фотограмметрическую модель в стереорежиме, контролировать ЦМР, полученную в автоматическом режиме, в частном случае, видеть точки, которые можно использовать для построения рельефа, проводить метрические измерения в абсолютных координатах проекта, выполнять различные операции с наносимыми векторными объектами и работать с классификаторами картографической информации. Безусловно, что все эти возможности в полной мере реализованы в ПО РНОТОМОР UAS компании «Ракурс». Также данный программный продукт позволяет создать корректные ортофотопланы, не искажающие изображения высотных объектов, в нужной номенклатурной нарезке, что тоже немаловажно при создании ортофотопланов для картографических целей.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГКИНП (ГНТА)-02-036-02 «Инструкции по фотограмметрическим работам при создании цифровых топографических карт и планов», М.: ЦНИИГАиК, 2002
- 2. ГКИНП (ОНТА)-02-262-02 «Инструкция по развитию съемочного обоснования и съемке ситуации рельефа с применением глобальных навигационных спутниковых систем ГЛОНАСС и GPS», М., ЦНИИГАиК, 2002